Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 22(1): 19, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34996347

RESUMO

BACKGROUND: An increasing body of evidence implicates the resident gut microbiota as playing a critical role in type 2 diabetes (T2D) pathogenesis. We previously reported significant improvement in postprandial glucose control in human participants with T2D following 12-week administration of a 5-strain novel probiotic formulation ('WBF-011') in a double-blind, randomized, placebo controlled setting (NCT03893422). While the clinical endpoints were encouraging, additional exploratory measurements were needed in order to link the motivating mechanistic hypothesis - increased short-chain fatty acids - with markers of disease. RESULTS: Here we report targeted and untargeted metabolomic measurements on fasting plasma (n = 104) collected at baseline and end of intervention. Butyrate and ursodeoxycholate increased among participants randomized to WBF-011, along with compelling trends between butyrate and glycated haemoglobin (HbA1c). In vitro monoculture experiments demonstrated that the formulation's C. butyricum strain efficiently synthesizes ursodeoxycholate from the primary bile acid chenodeoxycholate during butyrogenic growth. Untargeted metabolomics also revealed coordinated decreases in intermediates of fatty acid oxidation and bilirubin, potential secondary signatures for metabolic improvement. Finally, improvement in HbA1c was limited almost entirely to participants not using sulfonylurea drugs. We show that these drugs can inhibit growth of formulation strains in vitro. CONCLUSION: To our knowledge, this is the first description of an increase in circulating butyrate or ursodeoxycholate following a probiotic intervention in humans with T2D, adding support for the possibility of a targeted microbiome-based approach to assist in the management of T2D. The efficient synthesis of UDCA by C. butyricum is also likely of interest to investigators of its use as a probiotic in other disease settings. The potential for inhibitory interaction between sulfonylurea drugs and gut microbiota should be considered carefully in the design of future studies.


Assuntos
Butiratos/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Probióticos/uso terapêutico , Ácido Ursodesoxicólico/sangue , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo , Glicemia/efeitos dos fármacos , Butiratos/análise , Butiratos/metabolismo , Clostridium butyricum/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/microbiologia , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/sangue , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Microbioma Gastrointestinal/efeitos dos fármacos , Hemoglobinas Glicadas/análise , Humanos , Metabolômica , Probióticos/metabolismo , Compostos de Sulfonilureia/uso terapêutico , Ácido Ursodesoxicólico/análise , Ácido Ursodesoxicólico/metabolismo
2.
Gut Microbes ; 13(1): 1-28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33874858

RESUMO

Clostridium butyricum is a butyrate-producing human gut symbiont that has been safely used as a probiotic for decades. C. butyricum strains have been investigated for potential protective or ameliorative effects in a wide range of human diseases, including gut-acquired infection, intestinal injury, irritable bowel syndrome, inflammatory bowel disease, neurodegenerative disease, metabolic disease, and colorectal cancer. In this review we summarize the studies on C. butyricum supplementation with special attention to proposed mechanisms for the associated health benefits and the supporting experimental evidence. These mechanisms center on molecular signals (especially butyrate) as well as immunological signals in the digestive system that cascade well beyond the gut to the liver, adipose tissue, brain, and more. The safety of probiotic C. butyricum strains appears well-established. We identify areas where additional human randomized controlled trials would provide valuable further data related to the strains' utility as an intervention.


Assuntos
Butiratos/metabolismo , Clostridium butyricum/imunologia , Clostridium butyricum/metabolismo , Imunidade , Probióticos , Animais , Suplementos Nutricionais , Interações entre Hospedeiro e Microrganismos , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Síndrome do Intestino Irritável/imunologia , Síndrome do Intestino Irritável/microbiologia , Doenças Metabólicas/imunologia , Doenças Metabólicas/microbiologia , Neoplasias/imunologia , Neoplasias/microbiologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/microbiologia , Simbiose
3.
ISME J ; 14(2): 450-462, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31659234

RESUMO

Inhibitors can be used to control the functionality of microbial communities by targeting specific metabolisms. The targeted inhibition of dissimilatory sulfate reduction limits the generation of toxic and corrosive hydrogen sulfide across several industrial systems. Sulfate-reducing microorganisms (SRM) are specifically inhibited by sulfate analogs, such as perchlorate. Previously, we showed pure culture SRM adaptation to perchlorate stress through mutation of the sulfate adenylyltransferase, a central enzyme in the sulfate reduction pathway. Here, we explored adaptation to perchlorate across unconstrained SRM on a community scale. We followed natural and bio-augmented sulfidogenic communities through serial transfers in increasing concentrations of perchlorate. Our results demonstrated that perchlorate stress altered community structure by initially selecting for innately more resistant strains. Isolation, whole-genome sequencing, and molecular biology techniques allowed us to define subsequent genetic mechanisms of adaptation that arose across the dominant adapting SRM. Changes in the regulation of divalent anion:sodium symporter family transporters led to increased intracellular sulfate to perchlorate ratios, allowing SRM to escape the effects of competitive inhibition. Thus, in contrast to pure-culture results, SRM in communities cope with perchlorate stress via changes in anion transport and its regulation. This highlights the value of probing evolutionary questions in an ecological framework, bridging the gap between ecology, evolution, genomics, and physiology.


Assuntos
Evolução Molecular , Percloratos/toxicidade , Sulfatos/metabolismo , Ânions/metabolismo , Bactérias/genética , Bactérias/metabolismo , Transporte Biológico , Oxirredução , Percloratos/metabolismo , Sulfato Adenililtransferase/genética
4.
Front Microbiol ; 10: 654, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001230

RESUMO

Hydrogen sulfide is a toxic and corrosive gas, produced by the activity of sulfate-reducing microorganisms (SRM). Owing to the environmental, economic and human-health consequences of sulfide, there is interest in developing specific inhibitors of SRM. Recent studies have identified perchlorate as a promising emerging inhibitor. The aim of this work is to quantitatively dissect the inhibitory dynamics of perchlorate. Sulfidogenic mixed continuous-flow systems were treated with perchlorate. SRM number, sulfide production and community structure were monitored pre-, during and post-treatment. The data generated was compared to a simple mathematical model, where SRM growth slows as a result of inhibition. The experimental data supports the interpretation that perchlorate largely acts to suppress SRM growth rates, rendering planktonic SRM increasingly susceptible to wash-out. Surface-attachment was identified as an important parameter preventing SRM wash-out and thus governing inhibitory dynamics. Our study confirmed the lesser depletion of surface-attached SRM as compared to planktonic SRM during perchlorate treatment. Indirect effects of perchlorate (bio-competitive exclusion of SRM by dissimilatory perchlorate-reducing bacteria, DPRB) were also assayed by amending reactors with DPRB. Indeed, low concentrations of perchlorate coupled with DRPB amendment can drive sulfide concentrations to zero. Further, inhibition in a complex community was compared to that in a pure culture, highlighting similarities and differences between the two scenarios. Finally, we quantified susceptibility to perchlorate across SRM in various culture conditions, showing that prediction of complex behavior in continuous systems from batch results is possible. This study thus provides an overview of the sensitivity of sulfidogenic communities to perchlorate, as well as mechanisms underlying these patterns.

5.
Environ Microbiol ; 21(4): 1395-1406, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30807684

RESUMO

Hydrogen sulfide produced by sulfate-reducing microorganisms (SRM) poses significant health and economic risks, particularly during oil recovery. Previous studies identified perchlorate as a specific inhibitor of SRM. However, constant inhibitor addition to natural systems results in new selective pressures. Consequently, we investigated the ability of Desulfovibrio alaskensis G20 to evolve perchlorate resistance. Serial transfers in increasing concentrations of perchlorate led to robust growth in the presence of 100 mM inhibitor. Isolated adapted strains demonstrated a threefold increase in perchlorate resistance compared to the wild-type ancestor. Whole genome sequencing revealed a single base substitution in Dde_2265, the sulfate adenylyltransferase (sat). We purified and biochemically characterized the Sat from both wild-type and adapted strains, and showed that the adapted Sat was approximately threefold more resistant to perchlorate inhibition, mirroring whole cell results. The ability of this mutation to confer resistance across other inhibitors of sulfidogenesis was also assayed. The generalizability of this mutation was confirmed in multiple evolving G20 cultures and in another SRM, D. vulgaris Hildenborough. This work demonstrates that a single nucleotide polymorphism in Sat can have a significant impact on developing perchlorate resistance and emphasizes the value of adaptive laboratory evolution for understanding microbial responses to environmental perturbations.


Assuntos
Adaptação Fisiológica , Desulfovibrio/efeitos dos fármacos , Desulfovibrio/fisiologia , Percloratos/farmacologia , Sulfatos/metabolismo , Desulfovibrio/enzimologia , Desulfovibrio vulgaris/genética , Farmacorresistência Bacteriana/genética , Sulfeto de Hidrogênio , Mutação , Oxirredução , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
6.
Microbiology (Reading) ; 165(3): 254-269, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30556806

RESUMO

Microbial sulfate reduction (SR) by sulfate-reducing micro-organisms (SRM) is a primary environmental mechanism of anaerobic organic matter mineralization, and as such influences carbon and sulfur cycling in many natural and engineered environments. In industrial systems, SR results in the generation of hydrogen sulfide, a toxic, corrosive gas with adverse human health effects and significant economic and environmental consequences. Therefore, there has been considerable interest in developing strategies for mitigating hydrogen sulfide production, and several specific inhibitors of SRM have been identified and characterized. Specific inhibitors are compounds that disrupt the metabolism of one group of organisms, with little or no effect on the rest of the community. Putative specific inhibitors of SRM have been used to control sulfidogenesis in industrial and engineered systems. Despite the value of these inhibitors, mechanistic and quantitative studies into the molecular mechanisms of their inhibition have been sparse and unsystematic. The insight garnered by such studies is essential if we are to have a more complete understanding of SR, including the past and current selective pressures acting upon it. Furthermore, the ability to reliably control sulfidogenesis - and potentially assimilatory sulfate pathways - relies on a thorough molecular understanding of inhibition. The scope of this review is to summarize the current state of the field: how we measure and understand inhibition, the targets of specific SR inhibitors and how SRM acclimatize and/or adapt to these stressors.


Assuntos
Adenosina Fosfossulfato/análogos & derivados , Sulfato Adenililtransferase/antagonistas & inibidores , Sulfatos/química , Sulfatos/metabolismo , Adaptação Fisiológica/genética , Ânions/química , Ânions/metabolismo , Transporte Biológico , Sulfeto de Hidrogênio/metabolismo , Oxirredução , Sulfato Adenililtransferase/genética , Sulfato Adenililtransferase/metabolismo , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Bactérias Redutoras de Enxofre/metabolismo
7.
Environ Sci Technol ; 49(6): 3727-36, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25698072

RESUMO

Despite the environmental and economic cost of microbial sulfidogenesis in industrial operations, few compounds are known as selective inhibitors of respiratory sulfate reducing microorganisms (SRM), and no study has systematically and quantitatively evaluated the selectivity and potency of SRM inhibitors. Using general, high-throughput assays to quantitatively evaluate inhibitor potency and selectivity in a model sulfate-reducing microbial ecosystem as well as inhibitor specificity for the sulfate reduction pathway in a model SRM, we screened a panel of inorganic oxyanions. We identified several SRM selective inhibitors including selenate, selenite, tellurate, tellurite, nitrate, nitrite, perchlorate, chlorate, monofluorophosphate, vanadate, molydate, and tungstate. Monofluorophosphate (MFP) was not known previously as a selective SRM inhibitor, but has promising characteristics including low toxicity to eukaryotic organisms, high stability at circumneutral pH, utility as an abiotic corrosion inhibitor, and low cost. MFP remains a potent inhibitor of SRM growing by fermentation, and MFP is tolerated by nitrate and perchlorate reducing microorganisms. For SRM inhibition, MFP is synergistic with nitrite and chlorite, and could enhance the efficacy of nitrate or perchlorate treatments. Finally, MFP inhibition is multifaceted. Both inhibition of the central sulfate reduction pathway and release of cytoplasmic fluoride ion are implicated in the mechanism of MFP toxicity.


Assuntos
Bactérias/metabolismo , Fluoretos/farmacologia , Fosfatos/farmacologia , Sulfatos/metabolismo , Aerobiose/efeitos dos fármacos , Ânions , Bactérias/efeitos dos fármacos , Cloretos/farmacologia , Desulfovibrio/efeitos dos fármacos , Desulfovibrio/crescimento & desenvolvimento , Desulfovibrio/metabolismo , Fermentação/efeitos dos fármacos , Fluoretos/toxicidade , Íons , Mutação/genética , Nitritos/farmacologia , Oxirredução , Oxigênio/análise , Filogenia , Sulfetos/metabolismo
8.
ISME J ; 9(6): 1295-305, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25405978

RESUMO

We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD(+) ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD(+) ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD(+) ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems.


Assuntos
Cloratos/química , Nitratos/química , Percloratos/química , Sulfatos/química , Elementos de DNA Transponíveis , Desulfovibrio/metabolismo , Ecossistema , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica , Mutação , Oxirredução , Reação em Cadeia da Polimerase , Proteômica , RNA Ribossômico 16S/metabolismo , Sulfetos/química , Bactérias Redutoras de Enxofre/metabolismo
9.
PLoS One ; 9(3): e89531, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594936

RESUMO

While microbial communities play a key role in the geochemical cycling of nutrients and contaminants in anaerobic freshwater sediments, their structure and activity in polar desert ecosystems are still poorly understood, both across heterogeneous freshwater environments such as lakes and wetlands, and across sediment depths. To address this question, we performed targeted environmental transcriptomics analyses and characterized microbial diversity across three depths from sediment cores collected in a lake and a wetland, located on Cornwallis Island, NU, Canada. Microbial communities were characterized based on 16S rRNA and two functional gene transcripts: mcrA, involved in archaeal methane cycling and glnA, a bacterial housekeeping gene implicated in nitrogen metabolism. We show that methane cycling and overall bacterial metabolic activity are the highest at the surface of lake sediments but deeper within wetland sediments. Bacterial communities are highly diverse and structured as a function of both environment and depth, being more diverse in the wetland and near the surface. Archaea are mostly methanogens, structured by environment and more diverse in the wetland. McrA transcript analyses show that active methane cycling in the lake and wetland corresponds to distinct communities with a higher potential for methane cycling in the wetland. Methanosarcina spp., Methanosaeta spp. and a group of uncultured Archaea are the dominant methanogens in the wetland while Methanoregula spp. predominate in the lake.


Assuntos
Ecossistema , Sedimentos Geológicos/microbiologia , Transcriptoma , Microbiologia da Água , Áreas Alagadas , Regiões Árticas , Sequência de Bases , Biodiversidade , Primers do DNA , Lagos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...